An Improvement of the Cipolla-Lehmer Type Algorithms

نویسندگان

  • Namhun Koo
  • Gook Hwa Cho
  • Byeonghwan
  • Soonhak Kwon
چکیده

Let Fq be a finite field with q elements with prime power q and let r > 1 be an integer with q ≡ 1 (mod r). In this paper, we present a refinement of the Cipolla-Lehmer type algorithm given by H. C. Williams, and subsequently improved by K. S. Williams and K. Hardy. For a given r-th power residue c ∈ Fq where r is an odd prime, the algorithm of H. C. Williams determines a solution of X = c in O(r log q) multiplications in Fq, and the algorithm of K. S. Williams and K. Hardy finds a solution in O(r+r log q) multiplications in Fq. Our refinement finds a solution in O(r 3 + r log q) multiplications in Fq. Therefore our new method is better than the previously proposed algorithms independent of the size of r, and the implementation result via SAGE shows a substantial speed-up compared with the existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Cube Root Algorithm Based on Third Order Linear Recurrence Relation in Finite Field

We present a new cube root algorithm in finite field Fq with q a power of prime, which extends Cipolla-Lehmer type algorithms and has lower complexity than Tonelli-Shanks type algorithms. Efficient computation of r-th root in Fq has many applications in computational number theory and many other related areas. There are two standard algorithms for computing rth root in finite field. One is Adle...

متن کامل

A remark on the computation of cube roots in finite fields

We consider the computation of cube roots in finite fields. For the computation of square roots in finite fields, there are two typical methods; the Tonelli-Shanks method [9, 12] and the Cipolla-Lehmer method [4, 6]. The former can be extended easily to the case of r-th roots, which is called the Adleman-Manders-Miller method [1], but it seems to be difficult to extend the latter to more genera...

متن کامل

Cipolla Pseudoprimes

We consider the pseudoprimes that M. Cipolla constructed. We call such pseudoprimes Cipolla pseudoprimes. In this paper we find infinitely many Lucas and Lehmer pseudoprimes that are analogous to Cipolla pseudoprimes.

متن کامل

Remarks on the Pocklington and Padró-Sáez Cube Root Algorithm in 𝔽q

We clarify and generalize a cube root algorithm in Fq proposed by Pocklington [1], and later rediscovered by Padró and Sáez [2]. We correct some mistakes in [2] and give a full generalization of the result in [1, 2] for the cube root algorithm. We also give the comparison of the implementation of Pocklington and Padró-Sáez algorithm with two most popular cube root algorithms, namely the Adleman...

متن کامل

A Fast Euclidean Algorithm for Gaussian Integers

We present a new algorithm for computing a greatest common divisor of any two non-zero Gaussian integers. It is Euclidean in the sense that it computes a sequence of quotients and remainders. It is approximative in the sense that it approximates the exact quotient of any two successive remainders, Ai and Ai+1, and then uses a nearest Gaussian integer, Qi, to that approximate quotient to compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.04036  شماره 

صفحات  -

تاریخ انتشار 2015